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ABSTRACT

This work describes how stationary waves traveling on

nonlinear transmission lines may be determined within the

framework of harmonic balance. A particular property of

the given formulation is that sparse matrix packages opti-

mized for the solution of harmonic balance Newton update

equations are not disturbed. The method is demonstrated

for an LC line which supports the propagation of solitons

of a well-known, analytically given form.

INTRODUCTION

This work deals with technical details of the solution of

the harmonic balance (HB) update equation in connection

with further conditions that are required in autonomous

cases to fix additional degrees of freedom. The term au-

tonomous is used here in both a temporal and a spatial

respect; it subsumes circuits that generate oscillations (in-

cluding the case of forced oscillators) as well as circuits that

are capable of guiding traveling waves with unknown shape

and velocity, e.g. nonlinear lines. In the latter case of wave

guiding structures the real circuit will not be autonomous

in the strict sense (i.e. state equations are u = f(u), where

f does not explicitly depend on t), as every traveling wave

will have to be excited once, however, the part of the line

that will be used to determine the wave will be.

SOLUTION OF THE UPDATE EQUATION

The solution procedure for the update equation will be

given for the general case of several unknown fundamental

frequencies. The procedure will then be applied to the spe-

cial case of traveling waves on nonlinear lines, where one

unknown frequency, given as a delay time, is sought.

Consider a network in a quasi-periodic electrical regime

where voltages and currents may be given in the form

‘m(t) = ~ U~,n exp(jw.t), (1)

n

where Um (t) is the rn-th unknown voltage or current, and

the summation ranges over a set of frequencies generated

by the intermodulation of N incommensurable fundamental

tones UJ,i. A more detailed discussion of such conditions

can be found in [1].

Suppose M fundamental frequencies are free. Introduc-
ing tumng factors z:, i = 1 , . . M, such that during simula-

tion ~j,i = (1+ *i)uof,i, where ~of,i are starting estimates
for the free fundamentals, yields the augmented harmonic

balance equation

F(U; Zl, . . .. ZjW)=O (2)

for the final solution vector U and the unknown tuning fac-

tors Zi. Due to the addition of M unknowns M further

equations are required; commonly the phases of M suitable

intermodulation products Uk, ,hi (called “reference harmon-

ics” in [1]) are set to zero. In this work we assume that the

phases of these frequencies are to assume prescribed values

#i, i=l . . . M. The resulting nonlinear system of equations

is

F(U; zl, . . ..z~) = 0

U~l,hl – U{l,h, tang51 = O

‘i’~,h~ – ‘i&,hM hn(#M = 0,

(3)

where single and double primes denote real and imaginary

parts, respectively.

A common means of solving HB equations is the New-

ton method. This requires the solution of linear systems of

equations invoIving the Jacobian matrix of Eq. (3) which is

preferably accomplished by LU decomposition of the Jaco-

bian. One advantage of LU decomposition is that a decom-

posed Jacobian may be used for several steps, provided the

Jacobian undergoes only minor changes from step to step,

thus reducing computational costs. Usually the Jacobian is

considerably sparse, according to the network topology, and

is made up of a pattern of square and diagonal blocks the

size of which corresponds to the number of considered fre-

quencies. Therefore, the sparsity occurs on an intermediate

level corresponding to the network topology, while inside

blocks most places are non-zero unless (in the usual case

where the state vector contains positive frequency compo-

nents only) two components Gr,i+j and Gr,i-j of the under-

lying derivative vanish simultaneously. Specialized sparse

matrix packages for HB applications take account of these

properties to increase efficiency [2]. However, then, includ-

ing a few phase equations as in Eq. (3) is somewhat cum-

bersome, because these equations do not match the general

structure of the pure HB update equation corresponding to

Eq. (2) with Zi held constant. In order to maintain effi-

ciency, the update equation for Eq. (3) may be solved ss

shown below.

Consider the variation of the HB error for given vari-

ations of the state vector 6U and the tuning factors 6Zi,
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i.e.

6F = JNJ + ~J@i, (4)

i

where J is the Jacobian of F with respect to U and Ji

is the gradient of F with respect to *i. The Ji may be

determined e.g. by a straightforward modification of the

equations given in [1].

Multiplying Eq. (4) with J-l yields

Rd:f J-16F = 6U+~J-1Ji6~i (5)

i

or

R=6U+~Bi6~i, (6)

i

where Bi is the vector obtained by solving JBi = Ji. Once

an LU decomposition oft he act ual Jacobian haa been done,

the Bi may be determined by computationally little ex-

pensive forwardeand backward substitutions. Given a pre-

scribed value 6F (e.g. the last HB error multiplied by a

negative relaxation factor), R = J- 16F is the change that

U had to undergo if the ~i were fixed to constant values.

Introducing the phase errors

Pi = U;,,h, - U~,,h, tall~i, (7)

the update equation for Eq. (3) now writes as

R = 6U + ~Bi6~i

i

bpi = 6U~,,hi – 6U~,,h, tan~i, i = 1.. .M,

(8)

where the tipi are the prescribed changes in phase error for

the actual step.

Extracting those equations from Eq. (8) involving the

“reference harmonics” 6Uk, ,k, yields a reai linear sys-

tem of equations of order 3M for the 3M quantities

6U~,,h,, bU~,,h,, and &xi, i = 1 . . . M, which may be solved.

The state vector update 6U is then given by

(9)

For M = 2, letting (k, h) = (kl, hi), (1, m) =

(kz, hz), z=zl, y=zz, d=q$l, ~=dz, p=pl, andq=pz,
the above procedure leads to

with

(

B“ – B~,btanrj
N = B~lh

,,m – B{,m tan ~

Setting ~ = @ = O yields

C;m(R;,h – c$p) – C{,h(Rflm - Q)
6X =

B: ~C& – B:m C;,h
(12)

B:,h (Rflm – fq) - Bfm (%,h – 6p)
r5y =

B: hC;;m - B;’m C:,h “
(13)

Similarly, for M = 1,

reduces to
R: h – 15p

6X= ‘
B;,h

(14)

(15)

for tan # = O.

For M > 1. harmonic balance haa to be amdied with. .
caution because circuits supporting more than one free fre-

quency are highly likely to exhibit complicated dynamic

behaviour, e.g. erratic changes between infinitely many in-

stable quaaiperiodic states (the “quasi-periodic” route to

chaos, cf. [3]), in which case waveforms can not be de-

scribed by Eq. (l), though the HB solution process may

seem to converge for low accuracy thresholds occasionally.

However, there are cases with more than one free frequency

which may successfully be treated by HB, e.g. the mutual

pulling of two weakly coupled, different oscillators.

STATIONARY TRAVELING WAVES

As far aa the solution of the HB uDdate eauation is con-. .
cerned, the tuning factors ~i are not explicitly considered as

part of the state vector rather than as parameters that are

used in conjunction with ?dditional conditions to correct a

“raw” update R = J-16F to its final value, without dis-

turbing sparse matrix solvers that are tailor-made for the

particular properties of HB-Jacobians. However, the proce-

dure is algebraically equivalent to the mixed-mode Newton

iteration [1] if the Jacobian is regular.

A procedure similar to that above may be employed to

determine stationary traveling waves on nonlinear lines by

HB. Rather than fundamental frequencies, which are now

given and constant, the shape and velocity of waves trav-

eling on a homogeneous Iossless nonlinear line of infinite

length are sought. Consider a segment cut out of the line,

with port quantities vi(t), ii(t), i = 1,2, as shown in Fig. 1.

For a traveling wave that is subject to a time delay r with-

out change of shape while traveling through the segment, it

is required that

for all Fourier components considered. Both a and r are

unknown. It should be noted that the determination of a

and r and the port quantities V1,n, Il,n (plus state variables

of the line model) is an autonomous problem with funda-

mental frequencies being fixed.

a is included for the sake of generality only, however,

for waves traveling on lossless nonlinear lines the simulation

will have to yield a = 1 with high accuracy; a failure of this

condition will indicate the presence of losses and thus the

solution will not represent a wave traveling without change

of shape. Waves traveling on lossy nonlinear lines will in

general not only experience changes in “amplitude; but in

overall shape.
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For a properly posed problem, either one complex or

two real additional conditions are required, because there

are two additional real unknowns. Results of theoret ical and

experimental investigations [4, 5, 6] suggest that prescribing

a Fourier component might serve this purpose. Therefore,

without loss of generality, the condition

def
p = Vl,l – Vl,l = o (17)

for a given Vl,l will be imposed.

Eq. (16) may be considered to describe an imaginary

device that may be included by standard HB means; the

current leaving port 2, say, will have to be added as new

state variable I, if there is not already an equivalent quan-

tity due to the segment model part of the state vector. The

update equation is now

6F = J6U + Jac$a + J,&

iip’ = 6V;,1
bp” = W:’.

(18)

If F1 is the part of the error vector corresponding to I,

i.e.

F1,n = Vl,n – a exp(j% T)v2,n, (19)

the only non-zero elements of Ja and J, are

~=

aff
– exp(jun r)In (20)

8FI.
- = —exp(jwn r) V2,n,

aa
(21)

and

~=

8T
–jawn exp(jwn T)I. (22)

*=

ar
–jcwn exp(jufl T) Vz,n, (23)

where currents leaving a node are taken to be positive.

Application of the above given procedure then yields

with B = J-lJ@, C = J-lJr, and R = J-16F.

It should be noted that a priori there is not much more

known about solutions that have been found by the above

procedure, than that Eq. (16) is fulfilled to some degree of

accuracy. There is especially no evidence whether such a

solution represents a solitary wave or even a soliton (in the

sense aa given in [4]).

RESULTS

As a test for the method, a nonlinear transmission line

haa been chosen which supports the propagation of solitons

the analytical form of which is known. Fig. 2(a) shows a

segment of a nonlinear LC line with a voltage dependent

capacitance C(V). For the case C(V) = Co/(l + V/Vo), a

solution for a soliton is given by [6]

Un(t) = Vma$ sech @&nT.)), (26)

with

‘D= Esi”h-l (/%) ’27)

where v.(t) is the voltage at the n-t h segment. A compari-

son of a numerical solution achieved by HB and the analyt-

ical solution for L = 195.22pH, CO = 15.8445fF, VO = 0.65V

and Vmam = 130.67mV is shown in Fig. 2(b) for vi(t) and
V2(t). Corresponding curves of the numerical and analyt-

ical solution coincide within drawing accuracy. The HB

result for a was 1 - 3. 10-14, and TD = 1.7045ps or

6. 136 °@10GHz, giving a good agreement with the value

achieved by Eq. (27), TD = 1.7046ps.

Fig, 3 shows the absolute error of the harmonic bal-

ance solution. There is a small DC offset visible aa well as

an alternating error due to the finite number of considered

harmonics.

CONCLUSION

It haa been shown how the determination of station-

ary traveling waves on nonlinear transmission lines may be

achieved by harmonic balance. The method does not dis-

turb specialized sparse matrix solvers that exploit particular

properties of HB Jacobians. A comparison with an analyt-

ically given solution for a soliton on a nonlinear LC line

shows good agreement.
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Fig. 1: A segment cut out of a line. The line is made up of cascaded identical segments.

experiences a time delay ~ while running through the segment without change of shape.
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Fig. 2:

A stationary traveling wave
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(a) Segment of a nonlinear LC line. (b) Numerical (HB) and analytical solutions of VI (t) and Vz(t) for the nonlinear

LC Iinefor the caae C(V) = Co/(l+V/VO) with L = 195.22pH, Co = 15.8445fF, V. = 0.65V, and Vmaz = 130.67mV.

Within drawing accuracy, the numerical and the analytical results coincide for both VI(t) and Vz(t). The HB

calculations were performed with 30 harmonics.

Fig. 3: Absolute error of HB solution. I——
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