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ABSTRACT

This work describes how stationary waves traveling on
nonlinear transmission lines may be determined within the
framework of harmonic balance. A particular property of
the given formulation is that sparse matrix packages opti-
mized for the solution of harmonic balance Newton update
equations are not disturbed. The method is demonstrated
for an LC line which supports the propagation of solitons
of a well-known, analytically given form.

INTRODUCTION

This work deals with technical details of the solution of
the harmonic balance (HB) update equation in connection
with further conditions that are required in autonomous
cases to fix additional degrees of freedom. The term au-
tonomous is used here in both a temporal and a spatial
respect; it subsumes circuits that generate oscillations (in-
cluding the case of forced oscillators) as well as circuits that
are capable of guiding traveling waves with unknown shape
and velocity, e.g. nonlinear lines. In the latter case of wave
guiding structures the real circuit will not be autonomous
in the strict sense (i.e. state equations are u = f(u), where
f does not explicitly depend on t), as every traveling wave
will have to be excited once, however, the part of the line
that will be used to determine the wave will be.

SOLUTION OF THE UPDATE EQUATION

The solution procedure for the update equation will be
given for the general case of several unknown fundamental
frequencies. The procedure will then be applied to the spe-
cial case of traveling waves on nonlinear lines, where one
unknown frequency, given as a delay time, is sought.

Consider a network in a quasi-periodic electrical regime
where voltages and currents may be given in the form

U (1) = Z Um,n exp{jwnt), (1)

where u,,(t) is the m-th unknown voltage or current, and
the summation ranges over a set of frequencies generated
by the intermodulation of N incommensurable fundamental
tones wy ;. A more detailed discussion of such conditions
can be found in [1].

Suppose M fundamental frequencies are free. Introduc-
ing tuning factors z;,i = 1...M, such that during simula-
tion wy; = (14 x;)woy i, where woy,; are starting estimates
for the free fundamentals, yields the augmented harmonic
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balance equation
F(U;zy,...,zMm) =0 (2)

for the final solution vector U and the unknown tuning fac-
tors z;. Due to the addition of M unknowns M further
equations are required; commonly the phases of M suitable
intermodulation products Uk, »; (called “reference harmon-
ics” in [1]) are set to zero. In this work we assume that the
phases of these frequencies are to assume prescribed values
éi,i=1... M. The resulting nonlinear system of equations
is

F(U;.’Bl,...,.’BM) = 0
Ulin, — Uk tangs = 0
UIIC’M,hM - U’I‘M.hM tan ¢M = 0,

®)

where single and double primes denote real and imaginary
parts, respectively.

A common means of solving HB equations is the New-
ton method. This requires the solution of linear systems of
equations involving the Jacobian matrix of Eq. (3) which is
preferably accomplished by LU decomposition of the Jaco-
bian. One advantage of LU decomposition is that a decom-
posed Jacobian may be used for several steps, provided the
Jacobian undergoes only minor changes from step to step,
thus reducing computational costs. Usually the Jacobian is
considerably sparse, according to the network topology, and
is made up of a pattern of square and diagonal blocks the
size of which corresponds to the number of considered fre-
quencies. Therefore, the sparsity occurs on an intermediate
level corresponding to the network topology, while inside
blocks most places are non-zero unless (in the usual case
where the state vector contains positive frequency compo-
nents only) two components Gy i4+; and Gy ;_; of the under-
lying derivative vanish simultaneously. Specialized sparse
matrix packages for HB applications take account of these
properties to increase efficiency [2]. However, then, includ-
ing a few phase equations as in Eq. (3) is somewhat cum-
bersome, because these equations do not match the general
structure of the pure HB update equation corresponding to
Eq. (2) with z; held constant. In order to maintain effi-
ciency, the update equation for Eq. (3) may be solved as
shown below.

Consider the variation of the HB error for given vari-
ations of the state vector §U and the tuning factors éz;,
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i.e.

§F =J6U+ ) Jiba, 4)

where J is the Jacobian of F with respect to U and J;
is the gradient of F with respect to z;. The J; may be
determined e.g. by a straightforward modification of the
equations given in [1].

Multiplying Eq. (4) with J=1 yields

RY 3-16F = 65U+ 3 110:6a; (®)
i

or

R=6U+2Bi61‘i, (6)
i

where B; is the vector obtained by solving JB; = J;. Once
an LU decomposition of the actual Jacobian has been done,
the B; may be determined by computationally little ex-
pensive forward and backward substitutions. Given a pre-
scribed value 6F (e.g. the last HB error multiplied by a
negative relaxation factor), R = J~16F is the change that
U had to undergo if the z; were fixed to constant values.
Introducing the phase errors

bi = U:.,h. - UI;,,h. tan ¢;, (7
the update equation for Eq. (3) now writes as
R = 6§U+) Bibz;
bpi = Uy, p, ‘—- oUg, n tand;, i=1...M,

(8)

where the 6p; are the prescribed changes in phase error for
the actual step.

Extracting those equations from Eq. (8) involving the
“reference harmonics” 6Ug, n, yields a real linear sys-
tem of equations of order 3M for the 3M quantities
6Ux, n, Uk, n,, and ézi,i = 1... M, which may be solved.
The state vector update §U is then given by

SU=R- Y Bjbz;. (9)

For M = 2, letting (k,h) = (ki,h1),(I,m) =

(k2,h2), 2 = 21,y = 22,6 = ¢1,% = ¢2,p = p1, and ¢ = py,
the above procedure leads to

bz\ _ -1 (R{y— R ptand —6p
(5,,) = ( v~ R tangp—dg) (10
with

N (B;;,,‘ ~ Bl ,tan¢

,’c”h - C{:,h tan ¢
Bll,lm - B;,m tany

fm = Clmtany) (1)

Setting ¢ = 1 = 0 yields

g = Clm Bl =89 = CLy (R ~ 60
T Bl - BinCi

B;c’h(R;/m - 6q) - l”m(R;cl AT 61))

by = —= : ’ - . (13)
¥ hClim — Bl C
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Similarly, for M =1,

_ Ry, — R ptan¢ — 6p

8z = 14
T T By, —Bj,tend (14)
reduces to R s
—0p
bz = P~ (15)
kb
for tang = 0.

For M > 1, harmonic balance has to be applied with
caution because circuits supporting more than one free fre-
quency are highly likely to exhibit complicated dynamic
behaviour, e.g. erratic changes between infinitely many in-
stable quasiperiodic states (the “quasi-periodic” route to
chaos, ¢f. [3]), in which case waveforms can not be de-
scribed by Eq. (1), though the HB solution process may
seem to converge for low accuracy thresholds occasionally.
However, there are cases with more than one free frequency
which may succesfully be treated by HB, e.g. the mutual
pulling of two weakly coupled, different oscillators.

STATIONARY TRAVELING WAVES

As far as the solution of the HB update equation is con-
cerned, the tuning factors z; are not explicitly considered as
part of the state vector rather than as parameters that are
used in conjunction with additional conditions to correct a
“raw” update R = J~16F to its final value, without dis-
turbing sparse matrix solvers that are tailor-made for the
particular properties of HB-Jacobians. However, the proce-
dure is algebraically equivalent to the mixed-mode Newton
iteration [1] if the Jacobian is regular.

A procedure similar to that above may be employed to
determine stationary traveling waves on nonlinear lines by
HB. Rather than fundamental frequencies, which are now
given and constant, the shape and velocity of waves trav-
eling on a homogeneous lossless nonlinear line of infinite
length are sought. Consider a segment cut out of the line,
with port quantities v;(t),4:(t),7 = 1,2, as shown in Fig. 1.
For a traveling wave that is subject to a time delay = with-
out change of shape while traveling through the segment, it
is required that

Vin = aexp(jwnT)Van
Iin = aexp(jwnT)Ion

(16)

for all Fourier components considered. Both a and 7 are
unknown. It should be noted that the determination of o
and r and the port quantities V] , I1 ,, (plus state variables
of the line model) is an autonomous problem with funda-
mental frequencies being fixed.

a is included for the sake of generality only, however,
for waves traveling on lossless nonlinear lines the simulation
will have to yield @ = 1 with high accuracy; a failure of this
condition will indicate the presence of losses and thus the
solution will not represent a wave traveling without change
of shape. Waves traveling on lossy nonlinear lines will in
general not only experience changes in “amplitude,” but in
overall shape.



For a properly posed problem, either one complex or
two real additional conditions are required, because there
are two additional real unknowns. Results of theoretical and
experimental investigations [4, 5, 6] suggest that prescribing
a Fourier component might serve this purpose. Therefore,
without loss of generality, the condition

de -
P Vii-Vi=0 a7

for a given ‘71,1 will be imposed.

Eq. (16) may be considered to describe an imaginary
device that may be included by standard HB means; the
current leaving port 2, say, will have to be added as new
state variable I, if there is not already an equivalent quan-
tity due to the segment model part of the state vector. The
update equation is now

§F = J6U 4,60+ 367
&' = 6V1I,1
& = VL.
(18)

If Fy is the part of the error vector corresponding to I,
ie.

Frn=WVin— aexp(juat)Von, (19)
the only non-zero elements of J, and J, are
OF .
-_6?1;2 = —exp(jwnm)n (20)
OF; .
-a—a’" = —exp(jwnT)Van, (21)
and
OFy, _ . .
T = Jowy, eXP(an T)In (22)
OF, . ,
6:" = —jow, exp(jwnT)V2,n, (23)

where currents leaving a node are taken to be positive.
Application of the above given procedure then yields

o= ClalRia=89) — CLRE, =8
B ,CF, = BL1CY 1

_ Bia(RL = 69) = By (R = 00)
BL,CT, — BL1Ch,

ot

(25)

with B = J-1J,, C = J-1J,, and R = J-16F.

It should be noted that a priori there is not much more
known about solutions that have been found by the above
procedure, than that Eq. (16) is fulfilled to some degree of
accuracy. There is especially no evidence whether such a
solution represents a solitary wave or even a soliton (in the
sense as given in [4]).

RESULTS

As a test for the method, a nonlinear transmission line
has been chosen which supports the propagation of solitons
the analytical form of which is known. Fig. 2(a) shows a
segment of a nonlinear LC line with a voltage dependent
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capacitance C(V). For the case C(V) = Co/(1+V/V), a
solution for a soliton is given by {6]

Vmaa:
Ter(t= nTD)) . (26)

LCO LO . -1 Lmaz
= 4/ ~——sinh —_
Tp =1/ ysin (‘[ v | ¥1))

where v, (t) is the voltage at the n-th segment. A compari-
son of a numerical solution achieved by HB and the analyt-
ical solution for L = 195.22pH, Cy = 15.8445fF, V5 = 0.65V
and Vinge = 130.67mV is shown in Fig. 2(b) for v(t) and
vy(t). Corresponding curves of the numerical and analyt-
ical solution coincide within drawing accuracy. The HB
result for & was 1 — 3. 107!, and Tp = 1.7045ps or
6.136°@10GHz, giving a good agreement with the value
achieved by Eq. (27), Tp = 1.7046ps.

Fig. 3 shows the absolute error of the harmonic bal-
ance solution. There is a small DC offset visible as well as
an alternating error due to the finite number of considered
harmonics.

V() = Vinaz sech? (

with

CONCLUSION

1t has been shown how the determination of station-
ary traveling waves on nonlinear transmission lines may be
achieved by harmonic balance. The method does not dis-
turb specialized sparse matrix solvers that exploit particular
properties of HB Jacobians. A comparison with an analyt-
ically given solution for a soliton on a nonlinear LC line
shows good agreement.
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Fig. 1: A segment cut out of a line. The line is made up of cascaded identical segments. A stationary traveling wave
experiences a time delay 7 while running through the segment without change of shape.
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Fig. 2: (a) Segment of a nonlinear LC line. (b} Numerical (HB) and analytical solutions of v (¢) and vs(t) for the nonlinear
LC line for the case C(V) = Co/(1+V/Vp) with L = 195.22pH, Cy = 15.8445(F, Vp = 0.65V, and V;5er = 130.67mV.
Within drawing accuracy, the numerical and the analytical results coincide for both v1(t) and vz(t). The HB
calculations were performed with 30 harmonics.
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